Publications & technical resources

Explore how DHO technology is facilitating scientific discovery

Showing
publications
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Live-cell imaging
Flow cytometry
Diagnostics
3D surface metrology
Education
Materials science
Image refocusing
Darkfield
Brightfield
Polarization imaging
Simultaneous multicolor
FISH & smFISH
Custom order
Tetrapod
Deep focus
Single helix
Double helix
Super resolution
Multiplexed imaging
High-throughput screening
High-content screening
Inspection
Data visualization
Data analysis
Image reconstruction
Emitter localization
OEM integrations
Offline inspection
Inline inspection
Spatial omics
Volumetric imaging
Nuclear biology
Drug discovery
Bacterial biology
FRET & smFRET
HILO
TIRF
Widefield
PAINT
PALM
STORM
Computer vision
Multicolor
Light sheet
Optical engineering
Immunotherapy
Chemical engineering
CLEM
Biophysics
3D particle tracking
Physical chemistry
Neuroscience
Proteomics
SPINDLE
Phase mask
Cell biology
Variable-angle illumination
3DTRAX
3D SMLM
Drug delivery
Two photon microscopy
Genomics
Environmental remediation
AI & ML
Sep 28, 2023
|
Nature Structural & Molecular Biology
S. Basu, O. Shukron, D. Hall, P. Parutto, A. Ponjavic, D. Shah, W. Boucher, D. Lando, W. Zhang, N. Reynolds, L. H. Sober, A. Jartseva, R. Ragheb, X. Ma, J. Cramard, R. Floyd, J. Balmer, T. A. Drury, A. R. Carr, L.-M. Needham, A. Aubert, G. Communie, K. Gor, M. Steindel, L. Morey, E. Blanco, T. Bartke, L. Di Croce, I. Berger, C. Schaffitzel, S. F. Lee, T. J. Stevens, D. Klenerman, B. D. Hendrich, and D. Holcman
To understand how the nucleosome remodeling and deacetylase (NuRD) complex regulates enhancers and enhancer–promoter interactions, we have developed an approach to segment and extract key biophysical parameters from live-cell three-dimensional single-molecule trajectories. Unexpectedly, this has revealed that NuRD binds to chromatin for minutes, decompacts chromatin structure and increases enhancer dynamics. We also uncovered a rare fast-diffusing state of enhancers and found that NuRD restricts the time spent in this state. Hi-C and Cut&Run experiments revealed that NuRD modulates enhancer–promoter interactions in active chromatin, allowing them to contact each other over longer distances. Furthermore, NuRD leads to a marked redistribution of CTCF and, in particular, cohesin. We propose that NuRD promotes a decondensed chromatin environment, where enhancers and promoters can contact each other over longer distances, and where the resetting of enhancer–promoter interactions brought about by the fast decondensed chromatin motions is reduced, leading to more stable, long-lived enhancer–promoter relationships.
View publication
Apr 25, 2023
|
Journal of Biomedical Optics
Jingjing Gao, Pengwei Wang, Wenwen Li, Xuyu Zhang, Chunyuan Song, Zhentao Liu, Shensheng Han, and Honglin Liu
Significance: Double-helix point spread function (DH-PSF) microscopy has been developed for three-dimensional (3D) localization and imaging at super-resolution but usually in environments with no or weak scattering. To date, super-resolution imaging through turbid media has not been reported. Aim: We aim to explore the potential of DH-PSF microscopy in the imaging and localization of targets in scattering environments for improved 3D localization accuracy and imaging quality. Approach: The conventional DH-PSF method was modified to accommodate the scanning strategy combined with a deconvolution algorithm. The localization of a fluorescent microsphere is determined by the center of the corresponding double spot, and the image is reconstructed from the scanned data by deconvoluting the DH-PSF. Results: The resolution, i.e., the localization accuracy, was calibrated to 13 nm in the transverse plane and 51 nm in the axial direction. Penetration thickness could reach an optical thickness (OT) of 5. Proof-of-concept imaging and the 3D localization of fluorescent microspheres through an eggshell membrane and an inner epidermal membrane of an onion are presented to demonstrate the super-resolution and optical sectioning capabilities. Conclusions: Modified DH-PSF microscopy can image and localize targets buried in scattering media using super-resolution. Combining fluorescent dyes, nanoparticles, and quantum dots, among other fluorescent probes, the proposed method may provide a simple solution for visualizing deeper and clearer in/through scattering media, making in situ super-resolution microscopy possible for various demanding applications.
View publication
May 12, 2022
|
Molecular Biology of the Cell
Anna-Karin Gustavsson, Rajarshi P. Ghosh, Petar N. Petrov, Jan T. Liphardt, and W. E. Moerner
Chromatin organization and dynamics are critical for gene regulation. In this work we present a methodology for fast and parallel three-dimensional (3D) tracking of multiple chromosomal loci of choice over many thousands of frames on various timescales. We achieved this by developing and combining fluorogenic and replenishable nanobody arrays, engineered point spread functions, and light sheet illumination. The result is gentle live-cell 3D tracking with excellent spatiotemporal resolution throughout the mammalian cell nucleus. Correction for both sample drift and nuclear translation facilitated accurate long-term tracking of the chromatin dynamics. We demonstrate tracking both of fast dynamics (50 Hz) and over timescales extending to several hours, and we find both large heterogeneity between cells and apparent anisotropy in the dynamics in the axial direction. We further quantify the effect of inhibiting actin polymerization on the dynamics and find an overall increase in both the apparent diffusion coefficient D* and anomalous diffusion exponent α and a transition to more-isotropic dynamics in 3D after such treatment. We think that in the future our methodology will allow researchers to obtain a better fundamental understanding of chromatin dynamics and how it is altered during disease progression and after perturbations of cellular function.
View publication

No results found

Please try different keywords

Showing
webinars
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

No results found

Please try different keywords

Showing
notes
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

No results found

Please try different keywords

Ready to learn more?