X

Thank you for your message. We will respond shortly.

Please enter a valid name and email

Exploring The Unknown

Scientists are advancing their research with Double Helix Light Engineering.
Read their findings

Publications

Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning

Wu, Y., Rivenson, Y., Wang, H. et al. Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning. Nat Methods (2019) doi:10.1038/s41592-019-0622-5

Single-Molecule Tracking Microscopy – A Tool for Determining the Diffusive States of Cytosolic Molecules

Rocha, J. M., Gahlmann, A. Single-Molecule Tracking Microscopy – A Tool for Determining the Diffusive States of Cytosolic Molecules. J. Vis. Exp. (151), e59387, doi:10.3791/59387 (2019).

HER2 Cancer Protrusion Growth Signaling Regulated by Unhindered, Localized Filopodial Dynamics

W. Lam, et al.; bioRxiv 654988; doi: https://doi.org/10.1101/654988

Metasurface integrated with double-helix point spread function and metalens for three-dimensional imaging

Jin, C., Zhang, J. & Guo, C. (2019). Metasurface integrated with double-helix point spread function and metalens for three-dimensional imaging. Nanophotonics, 8(3), pp. 451-458. (2019) doi:10.1515/nanoph-2018-0216

Diffusive Escape of a Nanoparticle from a Porous Cavity

Dapeng Wang, Haichao Wu, Lijun Liu, Jizhong Chen, and Daniel K. Schwartz
Phys. Rev. Lett. 123, 118002 (2019)

Two-photon PSF-engineered image scanning microscopy

Omer Tzang, Dan Feldkhun, Anurag Agrawal, Alexander Jesacher, and Rafael Piestun, “Two-photon PSF-engineered image scanning microscopy,” Opt. Lett. 44, 895-898 (2019)

Quantitative Super-Resolution Microscopy of the Mammalian Glycocalyx

L. Möckl, K. Pedram, A. R. Roy, V. Krishnan, A.-K. Gustavsson, O. Dorigo, C. R. Bertozzi, and W. Moerner, “Quantitative Super-Resolution Microscopy of the Mammalian Glycocalyx,” Developmental Cell, May 2019.

Rapid 3D image scanning microscopy with multi-spot excitation and double-helix point spread function detection

S. Li, J. Wu, H. Li, D. Lin, B. Yu, and J. Qu, “Rapid 3D image scanning microscopy with multi-spot excitation and double-helix point spread function detection,” Optics Express, vol. 26, no. 18, p. 23585, 2018.

Deconvolution approach for 3D scanning microscopy with helical phase engineering

Roider, Clemens; Heintzmann, Rainer; Piestun, Rafael; and Jesacher, Alexander, “Deconvolution approach for 3D scanning microscopy with helical phase engineering.” (2016). Electrical, Computer & Energy Engineering Faculty Contributions. 7.

Chemistry of Photosensitive Fluorophores for Single-Molecule Localization Microscopy

F. M. Jradi and L. D. Lavis, “Chemistry of Photosensitive Fluorophores for Single-Molecule Localization Microscopy,” ACS Chemical Biology, 2019.

Spatio-temporal correlation super-resolution optical fluctuation imaging

Purohit, Ashvini; Vandenberg, W.; Dertinger, Thomas; Wöll, Dominik; Dedecker, Peter; Enderlein, Jörg Spatio-temporal correlation super-resolution optical fluctuation imaging epl, 125, 2, 20005 (2019)
[DOI: 10.1209/0295-5075/125/20005]

Revealing Nanoscale Morphology of the Primary Cilium Using Super-Resolution Fluorescence Microscopy

Joshua Yoon, Colin J. Comerci, Lucien E. Weiss, Ljiljana Milenkovic, Tim Stearns, and W. E. Moerner, Biophys. J. 116, 319-329 (2019) (DOI: 10.1016/j.bpj.2018.11.3136, published online 7 December 2018).

Maximizing the field of view and accuracy in 3D Single Molecule Localization Microscopy

Rehman, S. A., Carr, A. R., Lenz, M. O., Lee, S. F., & O’Holleran, K.
Optics Express, 26(4), 4631. (2018).

3D single-molecule super-resolution microscopy with a tilted light sheet

Gustavsson, A.-K., Petrov, P. N., Lee, M. Y., Shechtman, Y., & Moerner, W. E. 
Communications 2018 9:1, 9(1), 123. (2018).

Three-Dimensional Tracking of Interfacial Hopping Diffusion

Wang, D., Wu, H., & Schwartz, D. K. 
Physical Review Letters, 119(26), 268001. (2017)

Enhanced information content for three-dimensional localization and tracking using the double-helix point spread function with variable-angle illumination epifluorescence microscopy

Wang et al.
Applied Physics Letters 110, 211107 (2017)

Three-Dimensional Super-Resolution in Eukaryotic Cells Using the Double-Helix Point Spread Function

Carr et al. 
BioPhysical Journal, 112, 1444-1454 (2017)

ATPase-Modulated Stress Granules Contain a Diverse Proteome and Substructure

Jain, S. et al. 
Cell 164, 487–498 (2016).

Real-time adaptive drift correction for super-resolution localization microscopy

Grover, G., Mohrman, W. & Piestun, R.
Opt. Express 23, 23887–98 (2015).

Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging

Gahlmann, A. & Moerner, W. E
Nat. Rev. Microbiol. 12, 9–22 (2014).

Three-dimensional super-resolution and localization of dense clusters of single molecules

Barsic, A., Grover, G. & Piestun, R.
Sci. Rep. 4, 5388 (2014).

The role of molecular dipole orientation in single-molecule fluorescence microscopy and implications for super-resolution imaging

Backlund, M. P., Lew, M. D., Backer, A. S., Sahl, S. J. & Moerner, W. E. 
Chemphyschem 15, 587–99 (2014).

Extending single-molecule microscopy using optical Fourier processing

Backer, A. S. & Moerner, W. E. 
J. Phys. Chem. B 118, 8313–29 (2014).

Small-molecule labeling of live cell surfaces for three-dimensional super-resolution microscopy

Lee, M. K., Rai, P., Williams, J., Twieg, R. J. & Moerner, W. E. 
J. Am. Chem. Soc. 136, 14003–6 (2014).

Correlations of three-dimensional motion of chromosomal loci in yeast revealed by the double-helix point spread function microscope

Backlund, M. P., Joyner, R., Weis, K. & Moerner, W. E.
Mol. Biol. Cell 25, 3619–29 (2014).

Depth estimation and image recovery using broadband, incoherent illumination with engineered point spread functions [invited]

Jerod L. Ptacin, Andreas Gahlmann, Grant R. Bowman, Adam M. Perez, Alexander R. S. von Diezmann, Michael R. Eckart, W. E. Moerner, and Lucy Shapiro 
Proc. Natl. Acad. Sci. U. S. A. 111, E2046–55 (2014).

The double-helix point spread function enables precise and accurate measurement of 3D single-molecule localization and orientation

Backlund, M. P. et al. 
SPIE–the Int. Soc. Opt. Eng. 8590, 85900 (2013).

Super-resolution fluorescence imaging with single molecules

Sahl, S. J. & Moerner, W. E. 
Curr. Opin. Struct. Biol. 23, 778–87 (2013).

Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in three dimensions

Gahlmann, A. et al.
Nano Lett. 13, 987–93 (2013).

Depth estimation and image recovery using broadband, incoherent illumination with engineered point spread functions [Invited]

Quirin, S. & Piestun, R.
Appl. Opt. 52, A367–76 (2013).

Characterization of a three-dimensional double-helix point-spread function for fluorescence microscopy in the presence of spherical aberration

Ghosh, S. & Preza, C.
J. Biomed. Opt. 18, 036010 (2013).

The double-helix microscope super-resolves extended biological structures by localizing single blinking molecules in three dimensions with nanoscale precision

Lee, H.-L. D., Sahl, S. J., Lew, M. D. & Moerner, W. E.
Appl. Phys. Lett. 100, 153701–1537013 (2012).

Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE)

Grover, G., DeLuca, K., Quirin, S., DeLuca, J. & Piestun, R.
Opt. Express 20, 26681–95 (2012).

Limits of 3D dipole localization and orientation estimation for single-molecule imaging: towards Green’s tensor engineering

Lee, H.-L. D., Sahl, S. J., Lew, M. D. & Moerner, W. E.
Appl. Phys. Lett. 100, 153701–1537013 (2012).

Simultaneous, accurate measurement of the 3D position and orientation of single molecules

Backlund, M. P. et al.
Proc. Natl. Acad. Sci. U. S. A. 109, 19087–92 (2012).

Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions

Conkey, D. B., Trivedi, R. P., Pavani, S. R. P., Smalyukh, I. I. & Piestun, R
Opt. Express 19, 3835–42 (2011).

Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging

Grover, G., Quirin, S., Fiedler, C. & Piestun, R.
Biomed. Opt. Express 2, 3010–20 (2011).

Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function

Thompson, M. A., Casolari, J. M., Badieirostami, M., Brown, P. O. & Moerner, W. E.
Proc. Natl. Acad. Sci. U. S. A. 108, E1102–10 (2011)

Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function

Thompson, M. A., Lew, M. D., Badieirostami, M. & Moerner, W. E. 
Nano Lett. 10, 211–8 (2010).

Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane

Badieirostami, M., Lew, M. D., Thompson, M. A. & Moerner, W. E.
Appl. Phys. Lett. 97, 161103 (2010).

Performance limits on three-dimensional particle localization in photon-limited microscopy

Grover, G., Pavani, S. R. P. & Piestun, R.
Opt. Lett. 35, 3306–8 (2010).

In vivo Three-Dimensional Superresolution Fluorescence Tracking using a Double-Helix Point Spread Function

Lew, M. D., Thompson, M. A., Badieirostami, M. & Moerner, W. E.
Proc. SPIE–the Int. Soc. Opt. Eng. 7571, 75710Z (2010).

Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system

Pavani, S. R. P., Greengard, A. & Piestun, R.
Appl. Phys. Lett. 95, 021103 (2009).

Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function

Pavani, S. R. P. et al.
Proc. Natl. Acad. Sci. U. S. A. 106, 2995–9 (2009).

Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system

Pavani, S. R. P. & Piestun, R.
Opt. Express 16, 22048 (2008).

High-efficiency rotating point spread functions

Pavani, S. R. P. & Piestun, R.
Opt. Express 16, 3484 (2008).

Depth from diffracted rotation

Greengard, A., Schechner, Y. Y. & Piestun, R.
Opt. Lett. 31, 181 (2006).